Для чего нужна компенсация реактивной мощности и как она реализуется. Возможности компенсации реактивной энергии в быту с помощью Saving Box Компенсирующее устройство реактивной мощности

В квартирах и частных домах установлен один электросчетчик, по которому производится расчет оплаты за потребленную энергию. Упрощенно считается, что в быту используется только ее активная составляющая, хотя это не совсем так. Современное жилище насыщено устройствами, в схемах которых присутствуют элементы, сдвигающие фазу. Однако реактивная мощность, которую потребляют бытовые приборы, несравнимо меньше, чем у промышленных предприятий, поэтому при расчете оплаты ею традиционно пренебрегают.

Нагрузка индуктивная и емкостная

Если взять обычный нагревательный прибор или электрическую лампочку, то мощность, указанная в соответствующей надписи на колбе или табличке-шильдике, будет соответствовать произведению величин тока, проходящего через это устройство, и напряжения сети (у нас это 220 Вольт). Ситуация меняется, если прибор содержит трансформатор, другие элементы, содержащие или конденсаторы. Эти детали обладают особыми свойствами, график протекающего в них тока отстает или опережает синусоиду питающего напряжения - другими словами, происходит сдвиг фазы. Идеальная емкостная нагрузка сдвигает вектор на -90, а индуктивная - на +90 градусов. Мощность в этом случае становится результатом не только произведения тока на напряжение, добавляется некий поправочный коэффициент. К чему это приводит?

Геометрическое отражение процесса

Из школьного курса геометрии всем известно, что гипотенуза длиннее любого из катетов в прямоугольном треугольнике. Если активная, реактивная и полная мощность образуют его стороны, то токи, потребляемые катушкой и емкостью, будут находиться под прямым углом к резистивной составляющей, но с направлениями в противоположные стороны. При сложении (или, если угодно, вычитании, они разнознаковые) величин суммарный вектор, то есть полная реактивная мощность, в зависимости от того, какой характер нагрузки преобладает в схеме, будет направлен вверх или вниз. По его направлению можно судить, какой характер нагрузки преобладает.

Реактивная мощность при векторном сложении с активной составляющей даст полную величину потребляемой мощности. Она графически изображается как гипотенуза треугольника мощности. Чем более эта линия будет полого располагаться по отношению к оси абсцисс, тем лучше.

Косинус фи

Теория и практика

Все теоретические выкладки имеют ценность тем большую, чем применимее они на практике. Картина на любом развитом промышленном предприятии следующая: большая часть электроэнергии потребляется двигателями (синхронными, асинхронными, однофазными, трехфазными) и прочими машинами. А ведь есть еще и трансформаторы. Вывод простой: в реальных производственных условиях преобладает реактивная мощность индуктивного характера. Следует отметить, что на предприятиях устанавливают не один электросчетчик, как в домах и квартирах, а два, один из которых активный, а другой - несложно догадаться какой. И за перерасход напрасно «гоняемой» по линиям электропередач энергии соответствующие органы беспощадно штрафуют, так что администрация кровно заинтересована в том, чтобы произвести расчет реактивной мощности и принять меры к ее снижению. Ясно, что без электрической емкости при решении этой задачи не обойтись.

Компенсация по теории

Расчет производится по формуле:

  • C = 1 / (2πFX), где X - полное реактивное сопротивление всех включенных в сеть устройств; F - частота напряжения питания (у нас - 50 Hz);

Вроде бы - чего проще? Перемножить «X» и число «пи» на 50 да поделить. Однако все несколько сложнее.

А как на практике?

Формула несложна, но определить и рассчитать X не так-то просто. Для этого нужно взять все данные об устройствах, узнать их реактивное сопротивление, причем в векторном виде, и уже тогда… На самом деле, никто этим не занимается, кроме студентов на лабораторных работах.

Определить реактивную мощность можно и иначе, при помощи специального прибора - фазометра, указывающего косинус фи, или сравнив показания ваттметра, амперметра и вольтметра.

Осложняется дело тем, что в условиях реального производственного процесса величина нагрузки постоянно меняется, так как одни машины в процессе работы включаются, другие, напротив, отключаются от сети, как того требует технологический регламент. Соответственно, необходимы постоянные меры по отслеживанию ситуации. Во время ночных смен работает освещение, зимой в цехах может осуществляться нагрев воздуха, а летом - его охлаждение. Так или иначе, но компенсация реактивной мощности производится на основе теоретических расчетов с большой долей практических замеров cos φ.

Подключая и отключая конденсаторы

Наиболее простой и очевидный способ решить проблему - посадить возле фазометра специального работника, который бы включал или выключал нужное количество конденсаторов, добиваясь минимальной величины отклонения стрелки от единицы. Так вначале и делали, но практика показала, что пресловутый человеческий фактор не всегда позволяет добиваться нужного эффекта. В любом случае компенсация реактивной мощности, имеющей чаще всего индуктивный характер, производится подключением электрической емкости соответствующей величины, но делать это лучше в автоматическом режиме, иначе нерадивый работник может подвести родное предприятие под крупный штраф. Опять же, труд этот квалифицированным назвать нельзя, автоматизации он вполне поддается. Простейшая схема включает оптическую электронную пару из излучателя и приемника света. Стрелка перекрыла минимальное значение - значит, нужно добавить емкости.

Автоматика и интеллектуальные алгоритмы

В настоящее время есть системы, позволяющие надежно удерживать cos φ в пределах от 0,9 до 1. Так как подключение конденсаторов в них происходит дискретно, то идеального результата добиться невозможно, но экономический эффект автоматический компенсатор реактивной мощности все равно дает очень хороший. В основе работы этого прибора лежат интеллектуальные алгоритмы, обеспечивающие работу сразу после включения, чаще всего даже без дополнительных настроек. Технологические достижения в области вычислительной техники позволяют добиваться равномерного подключения всех ступеней конденсаторных батарей для того, чтобы избежать преждевременного выхода из строя одной или двух из них. Время срабатывания также минимизировано, а дополнительные дроссели снижают величину перепада напряжения во время переходных процессов. Современный питанием предприятия обладает соответствующей эргономической компоновкой, которая создает условия для быстрой оценки оператором ситуации, а в случае аварии или выхода из строя он получит немедленный тревожный сигнал. Цена такого шкафа немалая, но заплатить за него стоит, пользу он приносит.

Устройство компенсатора

Обычный компенсатор реактивной мощности представляет собой металлический шкаф стандартных размеров с панелью контроля и управления на лицевой панели, обычно открываемой. В нижней части его располагаются наборы конденсаторов (батареи). Такое расположение обусловлено простым соображением: электрические емкости довольно тяжелые, и вполне логично стремление сделать конструкцию более устойчивой. В верхней части, на уровне глаз оператора, находятся необходимые контрольные приборы, в том числе и фазоуказатель, при помощи которого можно судить о величине коэффициента мощности. Имеется также различная индикация, в том числе и аварийная, органы управления (включения и выключения, перехода на ручной режим и проч.). Оценку сравнения показаний измерительных датчиков и выработку управляющих воздействий (подключение конденсаторов нужного номинала) выполняет схема, основой которой служит микропроцессор. Исполнительные устройства работают быстро и бесшумно, они, как правило, построены на мощных тиристорах.

Примерный расчет конденсаторных батарей

На относительно небольших предприятиях реактивная мощность цепи может примерно оцениваться по количеству подключенных устройств с учетом их фазосдвигающих характеристик. Так, обычный асинхронный электродвигатель (главный «работяга» фабрик и заводов) при нагрузке, равной половине его обладает cos φ, равным 0,73, а люминесцентный светильник - 0,5. Параметр контактного сварочного аппарата колеблется в пределах от 0,8 до 0,9, дуговая печь работает с косинусом φ, равным 0,8. Таблицы, имеющиеся в распоряжении практически каждого главного энергетика, содержат сведения о практически всех видах промышленного оборудования, и предварительная установка компенсации реактивной мощности может производиться при помощи них. Однако такие данные служат лишь базой, на основании которой необходимо вносить коррективы, добавляя или отключая конденсаторные батареи.

В масштабах страны

Может сложиться впечатление о том, что всю заботу о параметрах электросетей и равномерности нагрузки на нее государство возложило на фабрики, заводы и прочие промышленные предприятия. Это не так. Энергосистема страны контролирует сдвиг фаз в общегосударственном и региональном масштабе, прямо на выходе своего особого товара из электростанций. Другой вопрос в том, что компенсация реактивной составляющей осуществляется не подключением конденсаторных батарей, а иным методом. Для обеспечения качества отпускаемой потребителям энергии в роторных обмотках регулируется ток подмагничивания, что в синхронных генераторах не составляет большой проблемы.

Слишком высокая или как еще её называют, реактивная энергия и мощность, способствуют значительному ухудшению работы электрических сетей и систем. Мы предлагаем рассмотреть в нашей статье как производится автоматическая компенсация реактивной мощности (крм) и перекомпенсация в сетях на предприятиях, в квартире и в быту.

Зачем нужна компенсация реактивной мощности

Чем больше требуется энергии – тем выше становится уровень потребления топлива. И это не всегда оправдано. Компенсация мощности, т.е, её правильный расчет, поможет сэкономить в промышленных распределительных электросетях на производстве до 50 % затрачиваемого топлива, а в некоторых случаях и больше.

Нужно понимать, что тем больше ресурсов затрачено на производство, тем выше будет цена конечного продукта. При возможности снизить стоимость изготовления товара, производитель либо предприниматель, сможет снизить его цену, чем привлечь потенциальных клиентов и потребителей.

Как наглядный пример – пара диаграмм ниже. Э ти векторы визуально передают полный эффект от работы установки.

Диаграмма до работы установки Диаграмма после работы установки

Кроме этого, мы также избавляемся от потерь в электросетях, от чего эффект следующий:

  • напряжение ровное, без перепадов;
  • увеличивается долговечность проводов (abb – авв, аку) и индукционной обмотки в жилых помещениях и на заводе;
  • значительная экономия на работе домашних трансформаторов и выпрямителей тока;
  • проведенная компенсация мощности и реактивной энергии значительно продлит время работы мощных устройств (асинхронный двигатель трехфазный и однофазный).
  • значительное снижение электрических затрат.
Общая схема преобразователя

Теория и практика

Чаще всего реактивная энергия и мощность потребляется при использовании трехфазного асинхронного двигателя, здесь и нужна компенсация сильнее всего. Согласно последним данным: 40 % – потребляют двигатели (от 10 кв), 30 – трансформаторы, 10 – преобразователи и выпрямители, 8% – расход освещения

Для того чтобы этот показатель уменьшить, используются конденсаторные устройства или установки. Но существует огромное количество подтипов этих электроприборов. Какие бывают конденсаторные установки и как они работают?

Видео: Что такое компенсация реактивной мощности и для чего она нужна?

Для того чтобы производилась компенсация энергии и реактивной мощности конденсаторными батареями и синхронными двигателями, понадобится установка энергосбережения. Чаще всего используют подобные устройства с реле, хотя вместо него может быть установлен контактор либо тиристор. Дома используются релейные приборы дуговой компенсации. Но если проводится компенсация реактивной энергии и мощности на заводах, у трансформаторов (там, где несимметричная нагрузка), то намного целесообразнее применять тиристорные устройства.

В отдельных случаях возможно использование комбинированных устройств, это приборы, которые одновременно работают и через линейный преобразователь, и через реле.

Чем поможет использование установок:

  • подстанция снизит скачки напряжения;
  • электрические сети станут более безопасными для работы электрических приборов, исчезнут проблемы компенсации электричеста и мощности у холодильных установок и сварочных аппаратов;
  • кроме этого, они очень просты в установке и эксплуатации.

Как установить конденсаторные устройства

Предварительно понадобится схема работы электросети, и документы от ПУЭ, по которым и проводится решение о компенсации энергии и реактивной мощности ДСП. Далее необходим экономический расчет:

  • сумма потребления энергии всеми приборами (это печи, цод, автоматические машины, холодильные установки и прочее);
  • сумма поступления тока в сеть;
  • вычисление потерь в цепях до поступления энергии к приборам, и после этого поступления;
  • частотный анализ.

Далее нужно сгенерировать часть мощности сразу на месте её поступления в сеть при помощи генератора. Это называется централизованная компенсация. Она может проводится также при помощи установки cos, electric, schneider, tg.

Но существует также индивидуальная однофазная компенсация реактивной энергии и мощности (либо поперечная), её цена намного ниже. В этом случае производится установка упорядоченных регулирующих устройств (конденсаторов), непосредственно у каждого потребителя питания. Это оптимальный выход, если регулируется трехфазный двигатель или электропривод. Но у этого типа компенсации есть существенный недостаток – она не регулируется, и поэтому называется еще и нерегулируемой или нелинейной.

Статические компенсаторы или тиристоры работают при помощи взаимоиндукции. В этом случае переключение производят при помощи двух или более тиристоров. Самый простой и безопасный метод, но его существенным недостатком является то, что гармоники генерируются вручную, что значительно усложняет процесс монтажа.

Продольная компенсация

Продольная компенсация производится методом варистора или разрядника.

Продольная компенсация реактивной мощности

Сам процесс происходит из-за наличия резонанса, который образуется из-за направления индуктивных зарядов друг другу на встречу. Данная технология и теория компенсации мощности применяется для реактивных и тяговых двигателей, сталеплавильной или станочной техники Гармоники, к примеру, и именуется еще искусственная.

Техническая сторона компенсации

Существует огромное количество производителей и типов установок конденсаторных установок:

  • тиристорные;
  • регуляторы на ферросплавном материале (Чехия);
  • резисторные (производятся в Петербурге);
  • низковольтные;
  • реакторы детюнинг (Германия);
  • модульные – самые новые и дорогостоящие на данный момент приборы;
  • контакторы (Украина).

Их стоимость разнится в зависимости от организации, для боле точной и исчерпывающей информации посетите форум, где обсуждается компенсаций реактивной мощности.

Специалисты и директора предприятий все больше задаются вопросами энергосбережения.Многие из потребителей хотят не только быть независимыми от внешних источников энергии, но и снизить затраты на ее потребление. Поэтому всё больше предприятий используют компенсаторы, которые позволяют получить более надежные и менее ресурсозатратные распределительные сети. Кроме статических компенсаторов существуют также динамические устройства. Первые используются для реактивной мощности в сетях без динамических изменений нагрузки, гармоники питающего напряжения не превышают 8%. Статический компенсатор представляет собой конденсаторную установку, оснащенную электромагнитными контакторами. Такой тип компенсаторов выпускается с ручным и автоматическим режимом работы.Максимальное количество коммутаций подобного компенсатора составляет не более 5000 в год. Если вам необходимо большее количество, то вам следует купить динамический компенсатор. Подобный аппарат применяется в сетях с резкопеременной нагрузкой, в которых гармоники питающего напряжения не превышают 8%. По принципу действия такой компенсатор является конденсаторной установкой с тиристорным коммутатором.


Исходя из способа управления коэффициентом мощности, компенсаторы разделяют на:

  • Автоматические устройства. Данные компенсаторы используется на объектах, технология которых приводит к частому изменению потребляемой мощности.Их преимуществом является регулирование, не нуждающееся в персонале, которое производится при помощи микропроцессорного контроллера. Дополнительно компенсаторы оснащены функциями контроля и выравнивания моторесурса конденсаторов.
  • Нерегулируемые компенсаторы. Применяются на объектах, на которых нагрузка не меняется в течение длительного времени или же ее изменение не приводит к изменению коэффициента мощности более допустимого предела. Подобный компенсатор дает возможность отключения и подключения ступеней вручную;
  • Смешанные компенсаторы. Предназначены для компенсации реактивной мощности постоянно подключенных потребителей, которая происходит аналогично работе автоматических компенсаторов.

В типовом варианте для включения компенсатора в сеть применяется выключатель-разъединитель со встроенной блокировкой, не допускающей открывания двери устройства при включенном выключателе-разъединителе. Компенсатор отличается модульным принципом построения, что позволяет постепенно наращивать номинальную мощность.

Мы предлагаем широкий выбор компенсаторов, поэтому вы сможете выбрать подходящее устройство и приобрести его по доступной в Москве цене.

Экономия энергоносителей – одна из главных задач современной цивилизации. Все больше статей появляется в интернете об экономии электроэнергии методом компенсации Действительно, для промышленных предприятий данный процесс актуален, так как экономит денежные средства. Довольно много людей начинает задумываться, если промышленные предприятия экономят на реактивной составляющей, возможна ли экономия на этом в быту, путем компенсации реактивной составляющей в мастерской, на даче или в квартире.

Я наверное вас разочарую – это невозможно сделать, по нескольким причинам:

  1. , которые устанавливаются для частных потребителей, ведут учет только активной мощности;
  2. Учет за реактивной составляющей ведется только на больших промышленных предприятиях, для частных потребителей этот учет не ведется;
  3. Такая энергия не выполняет абсолютно никакой полезной работы, а только греет провода и другие устройства;

Да, в бытовых условиях возможна установка фильтров, это снизит суммарный ток в цепи, уменьшит падение напряжения. При пуске устройств большой мощности (пылесосы, холодильники) бытовые компенсаторы реактивной мощности снижают пусковой ток. Довольно просто собрать компенсатор реактивной мощности своими руками в домашних условиях. Для этого необходимо рассчитать реактивную мощность для однофазного устройства:

Для этого вам необходимо произвести замеры напряжения и тока цепи. Как найти cosφ? Очень просто:

Р – активная мощность устройства (указывается на самом устройстве)

f- частота сети.

Подбираем конденсаторы для бытового компенсатора реактивной мощности по емкости, напряжению, роду тока. Конденсаторы вешаются параллельно нагрузке.

Снижение суммарного тока снизит нагрев и позволит максимально использовать мощность цепи. Но, на промышленных предприятиях cosφ строго регламентирован, и контролируется в большинстве случаев автоматически, то есть при выводе какого-либо устройства с работы cosφ все равно поддерживается в заданном диапазоне. Представьте, что вы рассчитали в вашей квартире, сделали компенсатор и подключили в цепь. Но через некоторое время отключился потребитель (например, холодильник) и баланс сети нарушился. Теперь вы не компенсируете, а генерируете реактивную энергию обратно в сеть, тем самым негативно влияя на работу других потребителей. Для того чтобы сохранять баланс необходимо постоянно следить за работой различных устройств. В быту автоматизировать данный процесс слишком дорого и лишено смысла, так как это не позволит вам вернуть деньги даже за компенсатор.

Можно сделать вывод что компенсация реактивной мощности в быту бессмысленна, так как не позволит сэкономить средства, а установка нерегулируемого компенсатора может привести к перекомпенсации и как следствие только ухудшить коэфициент мощности сети cosφ.

Если вы хотите экономить электроэнергию следует пользоваться старыми надежными способами:

  1. Покупать бытовую технику класса А или В;
  2. Выключать свет и бытовые приборы (исключение холодильник) когда уходите из дома;
  3. Заменить лампы накаливания на энергосберегающие. Они и служат дольше и потребляют меньше;
  4. Если пользуетесь электрочайником – кипятите столько воды, сколько требуется, это существенно снизит потребляемую им энергию;
  5. Чистить фильтр пылесоса для улучшения тяги и снижения энергопотребления;
  6. Утепляйте помещения для минимального использования электрических обогревателей.

На видео показан бытовой компенсатор реактивной мощности своими руками

На видео используется бытовой компенсатор в виде блока конденсаторных батарей

ОСНОВНЫЕ ТИПЫ

  • Нерегулируемые (постоянной мощности)

Состоят только из фиксированных ступеней. Принцип действия: включение и отключение разъединителя производится в ручном режиме (при отсутствии нагрузочного тока). Марки производимых установок - КРМ, КРМ1, УКЛ, УКЛ56, УКЛ57.

    Регулируемые (автоматические)

Состоят только из регулируемых ступеней. Принцип действия: коммутация осуществляется автоматически, включением и отключением ступеней. При этом мощность и момент включения автоматически определяются электронным блоком. Регулируя, повышая значение коэффициента cos(φ), высоковольтные конденсаторные установки "СлавЭнерго" автоматически компенсируют реактивную мощность нагрузки в электрических сетях напряжением 6,3 - 10,5 кВ. Наиболее часто встречающиеся аббревиатуры таких установок - КРМ, УКРМ 6, УКРМ 6,3, УКРМ 10, УКРЛ, УКРЛ56, УКРЛ57.

  • Полуавтоматические

Для того, чтобы удешевить установки компенсации реактивной мощности УКРМ 10 кВ и 6 кВ, сохранив при этом высокий уровень их качества, компанией СлавЭнерго были разработаны полуавтоматические компенсаторы реактивной мощности - гибрид двух вышеперечисленных типов УКРМ. В их составе имеются как регулируемые (автоматические) ступени, так и фиксированные (не регулируемые). Такие устройства получили широкое распространение ввиду того, что практически всегда некоторая часть нагрузки в высоковольтной сети присутствует постоянно, в круглосуточном режиме. Для этой "фиксированной" части нагрузки и подбираются соответствующие ёмкости конденсаторных батарей, размещаемых в нерегулируемых ячейках конденсаторных установок. Такие ступени в 2-3 раза дешевле по сравнению с автоматическими ступенями аналогичной мощности, что в свою очередь благоприятно сказывается на стоимости устройства компенсации реактивной мощности УКРМ в целом.

  • Фильтровые

Любые вышеперечисленные высоковольтные установки (нерегулируемые, регулируемые, полуавтоматические) при необходимости исполняются с защитными дросселями от гармонических искажений. Подробнее о таких установках Вы можете узнать

Технические характеристики основных высоковольтных УКРМ*

Наименование

Мощность,

Шаги регулировки,
квар

Габариты**

(при U=6.3 кВ)

(при U=10.5 кВ)

Фикс. Рег.
УКРМ-6,3 (10,5)-150-50 (100р+50р) 150 1х100 1х50 2394 х 1800 х 770 13,75 8,25 480
УКРМ-6,3 (10,5)-300-150 (150ф+150р) 300 1х150 1х150 2394 х 1800 х 770 27,49 16,50 530
УКРМ-6,3 (10,5)-450-150 (300ф+150р) 450 1х300 1х150 2394 х 1800 х 770 41,24 24,74 550
УКРМ-6,3 (10,5)-600-300 (300ф+300р) 600 1х300 1х300 2394 х 1800 х 770 54,99 32,99 600
УКРМ-10,5 (6,3)-900-450 (450ф+450р) 900 1х450 1х450 2394 х 1800 х 770 82,48 49,49 600
УКРМ-6,3 (10,5)-1350-450 (450ф+2х450р) 1350 1х450 2х450 3344 х 1800 х 770 123,72 74,23 910
УКРМ-6,3 (10,5)-2250-450 (3х450ф+2х450р) 2250 3х450 2х450 4294 х 1800 х 770 206,20 123,72 1375
УКРМ-6,3 (10,5)-3150-450 (3х450ф+4х450р) 3150 3х450 4х450 6194 х 1800 х 770 288,68 173,21 1850